Marangoni Convection in a Fluid Saturated Porous Layer with a Deformable Free Surface
نویسندگان
چکیده
The stability analysis of Marangoni convection in porous media with a deformable upper free surface is investigated. The linear stability theory and the normal mode analysis are applied and the resulting eigenvalue problem is solved exactly. The Darcy law and the Brinkman model are used to describe the flow in the porous medium heated from below. The effect of the Crispation number, Bond number and the Biot number are analyzed for the stability of the system. It is found that a decrease in the Crispation number and an increase in the Bond number delay the onset of convection in porous media. In addition, the system becomes more stable when the Biot number is increases and the Da number is decreases. Keywords— Deformable, Marangoni, Porous, Stability.
منابع مشابه
Marangoni Convection in a Fluid Saturated Porous Layer with a Deformable Free Surface Nor
The stability analysis of Marangoni convection in porous media with a deformable upper free surface is investigated. The linear stability theory and the normal mode analysis are applied and the resulting eigenvalue problem is solved exactly. The Darcy law and the Brinkman model are used to describe the flow in the porous medium heated from below. The effect of the Crispation number, Bond number...
متن کاملControl of Marangoni Convection in a Variable-Viscosity Fluid Layer with Deformable Surface
The effectiveness of a proportional feedback control to suppress the Marangoni instability in a variable-viscosity fluid layer with a deformable free upper surface is investigated. Viscosity variation and deformable free surface have destabilizing effects on the stability limit. The stability thresholds for the short-scale mode are strongly dependent on viscosity variation and controller gain w...
متن کاملRigidity and Irregularity Effect on Surface Wave Propagation in a Fluid Saturated Porous Layer
The propagation of surface waves in a fluid- saturated porous isotropic layer over a semi-infinite homogeneous elastic medium with an irregularity for free and rigid interfaces have been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for Love waves is derived by simple mathematical techniques followed by Fourier transformations. It can be seen t...
متن کاملGlobal Stability for Thermal Convection in a Couple Stress Fluid Saturating a Porous Medium with Temperature-Pressure Dependent Viscosity: Galerkin Method
A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below saturating a porous medium with temperature-pressure dependent viscosity for different conducting boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as the linear instability boundary. This optimal result is important because it shows that lineari...
متن کاملA NOVEL HOMOTOPY PERTURBATION METHOD: KOUROSH´S METHOD FOR A THERMAL BOUNDARY LAYER IN A SATURATED POROUS MEDIUM
this paper a novel homotopy perturbation method has been presented for forced convection boundary layer problems in a porous medium. Noting the infinite condition, a homotopy form which is similar to the singular perturbation form has been considered. The inner and outer solutions have been achieved and the coincidence of the results has been investigated with a proper matching method. The resu...
متن کامل